
International Journal of Theoretical Physics, Vol. 23, No. 3, 1984 

Quantum Logics Derived from Asymmetric 
Mielnik Forms 

Platon C. Deliyannis 

Department of Mathematics, Illinois Institute of TechnoloKv, Chicago, Illinois 

Received February 1, 1983 

It is shown that a logic will possess a "rich" set of states if and only if it can be 
derived from a Mielnik form, not necessarily symmetric. 

1. INTRODUCTION 

The question of recapturing the set of all events in a quantum logic 
from the set ~ of all states, or from a suitable subset, is of some 
importance, because on the one hand it offers the possibility of systematic 
construction of logics, while on the other reduces the study of E to that of 
r which in general appears to have some advantages. 

There is a wide class of logics for which this is possible. They are 
characterized by the list of properties to be described below under the name 
of axioms, all of which seem to possess a reasonable physical interpretation. 

By a logic we mean a set ~ partially ordered by a relation ~< and 
carrying a map ': ~ ---, ~, for which we assume the following: 

A x i o m  1. For all A, B we have A ~< B implies B'~< A', while (A ' ) '=  A. 
A x i o m  2. With A, V denoting infinum and supremum relative to the 

order ~ (not assumed to exist universally) we have A A A ' =  0, A v A ' =  I 
for two fixed elements O and I of E (and all A ~ ~), while O ' =  I, I ' =  0. 

A x i o m  3. The orthomodular law holds: If A ~< B then A'/x B exists and 
B = A V(A'A B). 

Elements A, B for which A ~< B' (or equivalently B ~< A') are called 
disjoint. We write this as A _L B. 

A x i o m  4. Infinite disjoint suprema exist: If A i ~< A) for i = j then the 
supremum EAi of the family (A~) exists. 
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We should note that this assumption is stronger than the usual one, 
which postulates the existence of suprema only for countable pairwise 
disjoint families. We should, however, also point out that the standard 
Hilbert space models do satisfy our stronger hypothesis, and that in general, 
if the logic is separable, Axiom 4 follows from the usual countable hypothe- 
sis. 

Needless to say, any at tempt  toward answering the problem posed at 
the beginning of this section is going to fail, unless "enough" states of 
exist. 

A state is a map m: E ~ [0, 1] such that m(I)  = 1, and for any family 
(A j) of pairwise disjoint elements we have m(EA~) = EmA r 

Again, our definition is stronger than usual, since it involves arbitrary, 
rather than countable, suprema. But, as noted above, for the classical 
models any state in the usual sense is also a state in our sense; for the 
general separable logic there is also no distinction. 

We shall assume the existence of a set a ~  of states which is " r ich"  as 
expressed in the following assumptions. 

Axiom 5. If pB = 1 for each p ~ ~ for which pA = 1, then A ~< B. 
Axiom 6. For each p ~ 63L the element Lp = inf(AIpA = 1) exists and 

p(Lp) = 1. Conversely, if A :* 0, there exists a p ~ 6-~ with pA = 1 (i.e., 
Lp A): 

We call Lp the support of the state p. 
Given any two elements p, q ~ ~ we can define the probabil i ty of 

transition f r o m p  to q as the number p( Lq), which we shall write as ( p  ~ q). 
Note  that since Lq is the cause of all events that occur with certainly in q, 
this definition does make sense. We shall not assume that ( p  ~ q) is 
symmetric in its variables (although we shall not exclude this case). Thus 
our system of transition probabilities will not form a classical Mielnik 
system. 

In the next section we shall establish the basic properties of this 
functional ( p ~ q )  which will form the foundation of the construction 
presented later. For the present we confine ourselves to the remark that the 
set 9]L equipped with this functional is quite sufficient to reproduce 
completely. 

2. P R E L I M I N A R Y  R E S U L T S  

We begin with the following remark. 

Lemma 1. For any p, q ~ 6-~ we have Lp .1_ Zq iff p(Lq) --- 0 iff 
q(Lp)  = O. 
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Proof Since Lp 1 Lq iff L,  <~ Lq, we have L r _L Lq iff p( L'q) = 1, i.e., iff 
p(Lq) = 0. Since Lp _1_ Lq is symmet r ic  in p ,  q the rest follows. �9 

Proposition 1. I f  A ~: 0 then A is the (disjoint) sum of supports .  

Proof Since by  Ax iom 6 there exists a p ~ ~ for which Lp ~< A, we can 
ob ta in  by Zorn ' s  l e m m a  a maximal  family (Lp,)  with Lp, • Lpj (for i :~ j )  
and  Lp, <~ A. By Ax iom 4 the event  B = ELp, exists. If  B ~: A, then A A B '  ~: 0 
(by or thomodular i ty) ,  hence there is a q ~ ~ with q(A/x B')  = I and so 
Lq <~ a. But then, since Lp, • A A B' ,  we have q(Lp,) = 0, o r  Lq • Zp~; thus 
(Lp) is not  max imal  d i s j o i n t - - a  contradict ion.  Thus  B = A, or A = ELp, 
with Lp, pairwise disjoint. �9 

Proposition 2. An event A is comple te ly  de te rmined  by  ( p  ~ e3LI pA = 1). 

Proof This is immedia te  by  Ax iom 5. �9 
The  quest ion of character iz ing " int r ins ical ly"  all sets of  the form 

(p ~ 6"SILIpA = 1) is, of  course, our  original question. We  shall formula te  the 
answer  in te rms of the funct ional  ( p ~ q), whose proper t ies  we first have to 
obtain.  

Proposition 3. The  transi t ion probabi l i ty  functional  has the following 
propert ies :  

(i) ( p - - - > p ) = l  fo ranyp~G. ;qL .  
(ii) ( p  ---, q) = 0 implies (q ---, p )  = 0 for all p ,  q ~ 9L.  

(iii) If  (Pi) is a family  in a_)IL such that, for i ~ j, (Pi ~ P j ) =  0 while for 
any p not  in the family we have at least one i with ( p  ~ p~) ~ 0 - - i n  
short,  if (p~) is a max imal  " o r t h o g o n a r '  family in ~ - - t h e n  for all 
p ~ ~ we have E ( p  ---> Pi) = 1. 

Proof Part  (i) follows f rom Ax iom 6, since P(L1, ) = 1. Part  (ii) is just  
Proposi t ion  1. For  par t  (iii), no te  that  for such a family (p i )  we have 
ELp, = I. But then 1 = p(1)  = F .p(Lp, )  = F,(p ---, p~). 

Note. For  any  A ~ E, if we consider  a maximal  disjoint family (Lp,)  of  
suppor t s  such that  A = ELp,,  then pA = F.(p ~ p~), according to Proposi-  
t ion 1. 

3. T H E  C H A R A C T E R I Z A T I O N  O F  

We shall use the t e rm span to describe a set S such that, for some 
or thogona l  set (P i )  --- S we have p ~ S iff E ( p  --> pi)  = 1. 

Theorem 1. For  any A ~ ~ the set (p ~ ~LIpA = 1) is a span  and  
conversely,  every span has this fo rm for  some unique event  A ~ ~. 
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Proof Given A consider any maximal disjoint family of supports, say, 
(Lp,), with A -- ELp .  Then, by the note at the end of the previous section, 
we have pA = 1 iff E ( p  ~ Pi) = 1. Thus the first part  is established. Con- 
versely let S be a span, and let (p i )  be an orthogonal family such that p ~ S 
iff E(p---' Pi)= 1. The events Lp, being pairwise disjoint, we set A = Y'.Lp, 
and note that pA = 1 iff ]Ep(Lp,) = 1, i.e., i f f p  ~ S. Clearly this A is unique 
by Proposition 2. �9 

We can describe the partial order ~< and the complementat ion in terms 
of spans as follows. 

Theorem 2. If A corresponds to the span S and B to the span T, 
then A ~< B iff S c_ T. Further the span corresponding to A' is 
(PI(P  ' - '  q) = 0 for all q ~ S). 

Proof The first part  is just Axiom 5. The second follows from the 
obvious fact that p ( A ' )  = 1 i f f p ( A )  = 0: because q ~ S iff qA = 1 iff Lq ~ A; 
hence p ( A ' ) = l  implies p(Lq)=O, i.e., (p---, q ) =  0. Thus every p in the 
span corresponding to A' is orthogonal to each state in S. Conversely, if 
( p ---, q) = 0 for all q ~ S, then pA = 0, because by Proposition 1 the event A 
has the form ELp, with pi ~ S, hence pA = E(p ---> Pi) = O. �9 

These two theorems provide the answer to our original question of 
characterizing the events in terms of the state space ,r We shall now 
proceed with the construction promised in the introduction. 

4. GENERALIZED M I E L N I K  S Y S T E M S  

We consider a set r and a map from ~ • r to [0, 1], whose value at 
(p ,q )  we shall write as (p---, q) to emphasize its interpretation as the 
probabili ty of transition from p to q. We do not assume symmetry; all we 
need is contained in Proposition 3, but we repeat it here for the reader 's  
convenience. 

(i) For  all p ~ ~ we have ( p ~ p)  = 1. 
(ii) If  ( p  ~ q) = O, then (q ~ p )  = 0 also. Thus we can refer to such p, q as 

being orthogonal, without ambiguity. 
(iii) If  (Pi) is a maximal orthogonal family in ~ ,  then for any p ~ ~ we 

have F_,( p ~ Pi) = 1. 

The usual two extra conditions associated with Mielnik systems, namely, 
( p  ---, q) = 1, implies p = q and ( p  ~ q) = (q ~ p),  will not be assumed, as 
they are not needed. Neither of these follows from (i), (ii), (iii) above, as the 
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following example shows: 

p q r s 

I 1 p 1 0 ~ 

q 0 1 0 0 

r 1 0 1 0 
s 1 0 0 1 

We shall refer to a family of the form ( (p  ~ q)lq ~ 91L) as a " row"  and 
to one of the form ( (p  ~ q)lP ~ ~IC) as a "column."  It is quite possible for 
two columns to be identical while the corresponding rows are distinct: 

P 

q 

r 

s 

t 

p q r s t 

I 1 1 0 �89 : 
1 2 1 1 0 3 

0 0 1 0 0 
1 1 0 1 0 
1 1 0 0 1 

As we shall see later, however, if two rows are identical, the two correspond- 
ing columns are also identical, in which case we shall delete one of these two 
rows and the corresponding column, as it merely contributes unnecessary 
duplication. 

We shall retain the use of the term span introduced earlier: if (p~) is 
any orthogonal family in ~ we shall write SP(p~) for the set (plY.( p ~ Pi) 
=1).  For any S___ 91L we shall write S • for (q l (p- - - ,q )=O for all p ~ S ) .  

Lemma 2. Let (p i )  be pairwise orthogonal; then SP(pi} = (( Pi) • ) • 

Proof Consider any r orthogonal to each element q ~  (p , ) •  and 
augment (by Zorn 's  lemma) the family (Pi) by elements (qj} to obtain a 
maximal orthogonal family (pi ,  qj) in 63L. Then E(r ~ p i )+E(r  --+ qj) = 1; 
but qj ~ {pi} • hence (r  ~ qj) = 0 and so Y'.(r ~ Pi) = 1, i.e., r ~ SP(pi). For 
the reverse, let q ~ (p , ) •  and augment by the elements (rk} tO obtain a 
maximal orthogonal family (Pi, q, rk) in 63E. For any r we have Y.(p ~ p , ) +  
(r  ~ q ) + E ( r  ~ rk) = 1, and so if r ~ SP(p~) we obtain (r  ~ q) = 0, i.e., 

r ~ ( (p i ) •  • �9 

Lemma 3. Let qj ~SP(p i ) ,  and (qj)  orthogonal. Then SP(qj)__ 

SP( Pi)" 
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Proof. Consider an element r ~ (p i ) •  by Lemma 2, r is orthogonal to 
every element in SP(p,.), hence r is orthogonal to all qj. Therefore, again by 
Lemma 2, r is in (SP(qj)) • So we have established that q ~ SP(qj.) implies q 
orthogonal to (pi) l ,  i.e., q ~ ((pi) • ) • = SP(pi). 

Lemma 4. Given (Pi) and (qj) such that (p~, qj) is maximal orthog- 
onal in 91L, we have SP(pi) • = SP(qj). 

Proof. Consider any q ~ SP(qj); since Y'.(q ---, pi)+E(q ---, qj.) = 1 and 
also E(q ---, qj) = 1, we have (q ---, p~) -- 0, and thus q ~ (pi) • , i.e., q 
SP(pi) • Conversely, let r ~ SP(pi)•  since 2E(r ---, pi)+2C(r --, qj) = 1, we 
obtain F.(r ---, qj) = 1, i.e., r ~ SP(qj). �9 

Lemma 5. If (rk) is maximal orthogonal in SP(pi), then SP(rk)= 

SP( Pi )" 

Proof. Choose (qj) so that (Pi, qj) is maximal orthogonal in ~ Since 
SP(q j )=  SP(pi) • we have qj orthogonal to each r k. Thus (qj, rk) is an 
orthogonal family. But if r is orthogonal to all qj, rk, then r ~ SP(qj) l = 
SP(p~) (by Lemma 4) hence (r, r~) is an orthogonal family in SP(pi) which 
is impossible since (r~) is maximal orthogonal in SP(Pi). Thus (r~, qj) is 
maximal orthogonal in ~ hence SP(rk)= SP(qj) • = SP(pi). �9 

Lemma 6. Let (Pi), (qj) be orthogonal families. Then SP(pi) = 
SP(qj) iff for any r ~ r have F.(r --, Pi) = F.(r --, qj). 

Proof. The condition is obviously sufficient. So let S P (p i )=  SP(qj) and 
select a maximal orthogonal family (r k) in SP(p~) • = S P(qj) • ). Then both 
(p~, rk) and (qj, rk) are maximal orthogonal in r hence for all r ~ 91L we 
have E( r  ---, pi )+E(r  ---' rk) = 1 = E( r  ---, q j ) + E ( r  ---, rk) which yields the de- 
sired condition. �9 

This is as good a place as any to verify that if two rows are identical, 
i.e., if ( p  ---, r )  = (q ~ r)  for all r, then the corresponding columns also are 
identical, i.e., ( r  ---, p )  = (r  ---, q) for all r. To see this note that the hypothe- 
sis implies (p---, q ) =  (q-- ,  p ) =  1. This is enough to produce the desired 
result. Because ( p  ---, q) = 1 implies p ~ SP(q) (note that (q) is an orthogonal 
set) hence SP(p)  ___ SP(q). But then (q ~ p)  = 1 similarly gives SP(q) _c 
SP(p).  Thus SP(p)  = SP(q) and Lemma 6 completes the argument. 

Remark. The definition of a span may seem somewhat awkward as far 
as verification or construction goes, particularly since it seems that knowl- 
edge of all values of the functional ( p  ---, q) is necessary. It turns out that all 
one needs is knowledge of all orthogonal pairs. This is essentially contained 
in the above lemmas, in particular Lemma 4: a subset of CAlL is a span iff it is 
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the or thocomplement  of some orthogonal set. It is not, however, possible to 
define arbitrarily [subject to condition (ii)] the various orthogonal pairs. 

5. C O N S T R U C T I O N  OF T H E  L O G I C  

Given a generalized Mielnik system, let E be the set of all spans. For 
A, B ~ E let A ~ B mean inclusion _ ,  and let A' be the span A • (by Lemma 
4, A ~ is indeed a span). 

Theorem 3. The set E with the above structure is a logic, i.e., axioms 
1 through 4 hold. 

Proof  It  is clear that ~< is a partial order and that ' satisfies Axiom 1. 
The element 0 is just O and the element I is 9E,  and Axiom 2 is also quite 
clearly valid. To verify the or thomodular  law, let A ~< B, A = SP(pi) and 
select (qj) so that (Pi,  qj)  are maximal orthogonal in B. We then have 
B = SP(p i, qj) by Lemma 5. Let C = SP(qj) and note that C ~< B and that 
since all qj are orthogonal to the Pi, we have C ~< A'. To show that 
C = A' A B, consider any D ~< A', D ~< B. For any r ~ D we have r orthogo- 
nal to all pi, since p, ~ A; on the other hand r ~ B implies )E(r --, pi) + Y'.(r 

qj) = 1, and so E(r  ~ qj) = 1, i.e., r ~ C. So D ~< C, which means that 
C = A' A B. To show that B = A v C we consider some E >/A, E >/C; since 
pi, q j ~  E we have SP(p~,qj)___ E, i.e., B~< E, which means B is indeed 
A v C. Finally we verify Axiom 4. Let A i = SP(Pi j lJ  ~ ~), and let Ai,, Ai,. be 
disjoint, which means that the whole family (p i j )  is orthogonal. Write A for 
SP(p,j).  Evidently Ai ~< A, and so we consider some B >/A~; since all pgj ~ B 
we can find r k ~ B so that SP(pij,  rk) = B. But then, r ~ A implies E(r  
p~j) = 1, hence also ~,(r ~ Pij)  + •(r ~ r k) = 1, since this sum i s  ~< 1 by 
property (iii) and >/I by the previous relation. Thus r ~ B, i.e., A ~< B, and 
this means A is the supremum of the Ai. �9 

For any p ~ ~ ,  A ~ E we define pA to be the number  E ( p - - ,  p~), 
where A = SP(p~). By Lemma 6 this does not depend on the choice of the 
maximal orthogonal set (p i )  in A. It is clear from the structure of EAj 
described in the last proof  that the map A ---, pA is a state of E. Note  that if 
pA = qA for all A, t h e n p  = q; because this implies ( p  ~ r )  = (q ~ r )  for all 
r, and so by the remarks in Section 4 we have p = q. We shall thus identify 
the map A --, pA to the element p. 

Theorem 4. The set 63L, considered as a set of states of E, satisfies 
Axioms 5 and 6. 
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Proof. Note that pA = 1 iff p ~ A; this makes Axiom 5 obvious. Now 
given p ~ r consider the element SP(p)  = (q ~ r ~ p)  = 1); evidently 
p ( S P ( p ) ) =  1. Now if pA = 1, then p ~ A and (by Lemma 3) SP(p)___ A. 
Therefore SP(p)  is the support of the state p. Finally, if A ~: 0 it has the 
form SP(p~) for s o m e  ( p i ) ;  but clearly piA = 1, and so Axiom 6 holds. �9 

The question of whether E is a lattice can be answered at once by the 
following. 

Proposition 4. I fA is the infimum of (Ai), then A = n A~ (as sets). Thus 
a family (A~) has an infimum iff its set intersection is a span. 

Proof. Evidently A ~ N A r Now if (qj) is any orthogonal set in N A i, 
we have SP(qj) ~< Ai for all i, hence SP(qj) ~< A. But every element of A~ is 
part of an orthogonal set, hence n A~ __c A. The rest is obvious. �9 

It is not hard to see that it suffices to have N A~ a subspace, in the 
sense that the functional (p---,q) restricted to A A~ satisfies the basic 
properties (i), (ii), (iii) in Section 4. 

Not all logics constructed in this way will be lattices, even if the 
functional ( p  --, q) is symmetric, as the following example shows: 

P 
q 

F 

$ 

U 

t) 

X 

Y 

p q r s u v x y 

1 0 0 ot l - a  a 0 0 

0 l 0 l - a  a 7 I - y - a  a +  7 
0 0 1 0 0 l - 7 - a  7 + ~  I - y - a  

1 - ~  0 1 0 7 + a  I - 7 - ~  7 
1 - ~  ~ 0 0 I 0 0 a 

a "y 1 - 7 - a  T + ~  0 1 0 l - a  

0 I - ' f - a  y + a  l - 1 , - a  0 0 I 0 

0 a +  7 l - ' f - u  7 ~x I - a  0 I 

Indeed: SP(p,  q) = (p ,  q, s, u), SP(p,  y)  
section is (p ,  u), which is not a span. 

= (p ,  u, v, y)  and their inter- 

6. REMARKS 

It is of importance to known whether the relaxation of symmetry on 
the functional ( p  ~ q) has any significance, i.e., whether it actually pro- 
duces more logics. In the Appendix we show that a certain logic generated 
by six states cannot be obtained from a symmetric functional. Thus we have 
indeed a more extensive class. 
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It is not difficult to see that asymmetric functionals of any "size" 
(finite or infinite) can be constructed. As yet, we do not have a systematic 
way of constructing them all. 

A P P E N D I X  

Consider the logic E determined by the system 

P 
q 

r 

S 

U 

t )  

p q r s u v 
I I 

1 0 0 0 2 2 
I 1 0 1 0 0 2 2 
I 1 0 0 1 0 2 2 

0 0 0 l 0 0 
i i i 0 1 0 

I i I 0 0 1 

There are two maximal orthogonal sets (p,  q, r, s) and (s, u, v). Besides 
the singleton spans, there are eight two-element spans: (p,  q), (p,  r), (p ,  s), 
(q, r), (q, s), (r, s), (s, u), (s, v); three three-element spans: (p,  q, s), (p,  r, s), 
(q, r, s); and one five-element span: (p,  q, r, u, v). Counting 0 and I we 
have 20 elements in all. The six one-element spans are the atoms of ~, and 
we shall write X for the span SP(x). Thus a state m of E is determined by the 
6-tuple (re(P), m(Q), m(R), m(S),  m(U), m(V)) subject to the conditions 
m(X)>~O, m(e)+m(Q)+m(R)+m(S)=l, m(S)+m(U)+m(V)=l. It 
is straightforward to verify that there are seven pure states (0,0,0, 1,0,0), 
(l,O,O,O,O, 1), (0, 1,O,O,O, I), (0,0, 1,O,O, 1), (1,0,0,0, 1,O), (0, 1,O,O, 1,0), 
(0,0, 1,0, 1,0) so that the arbitrary state of ~ has the form (A2 + ~5, A3 + 
~6,~4"1-~7,~k1,~5 + ~k6-{-~7,~2-1-~3+~4), where ~i>~0, E~=lh ;= l .  We 
shall show that there is no "rich" subset for which the functional (p  ---, q) = 
p(Lq) is symmetric. Assume there is. Then the second part of Axiom 6 
implies that the "rich" set must include one state m for which m(P) = 1, i.e., 
of the form (1,0,0,0, a , l - a ) ;  similarly, taking all other atoms into ac- 
count, we see that states of the forms (0, 1,0,0, fl, 1 - fl), (0,0, 1,0, ~,, 1 - 30, 
(0,0,0,1,0,0), ( ~ , / ~ , I - X - ~ , 0 , 1 , 0 ) ,  ( p , r , l - p - ~ - , 0 , 0 , 1 )  must be in- 
cluded corresponding to Q, R, S, U, V, respectively, where a, fl, "y, ~, ~, p, ~- 
are different from 0 and 1. Note that each of these states has the corre- 
sponding atom as a support. The transition probability matrix for these 
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states thus obtains the following form: 

1 0 0 0 a 1 - a  
0 1  0 0 B 1 - f l  
0 0 1 0 ~, 1 -~ ,  

0 0 0 1 0 0 
/~ 1 - h - g  0 1 0 

p I" 1 - p - l "  0 0 1 

and it is clear that no choice of the parameters can make it symmetric. Since 
any "r ich" system of states must include the above, we see that no rich 
symmetric systems of states exists. 


